
# Transitive closure: warshall's Algorithm

consider a directed graph G=(V,E), where V is the set of vertices and E is the set of edges. The transitive closure of G is a graph G+ = (V,E+) such that for all v,w in V there is an edge (v,w) in E+ if and only if there is a non-null path from v to w in G

# warshall's algorithm: transitive closure

- Computes the transitive closure of a relation
- (Alternatively: all paths in a directed graph)
- Example of transitive closure:



Main idea: a path exists between two vertices i, j, iff
 there is an edge from i to j; or

•there is a path from i to j going through intermediate vertices which are drawn from set {vertex 1}; or

•there is a path from i to j going through intermediate vertices which are drawn from set {vertex 1, 2}; or



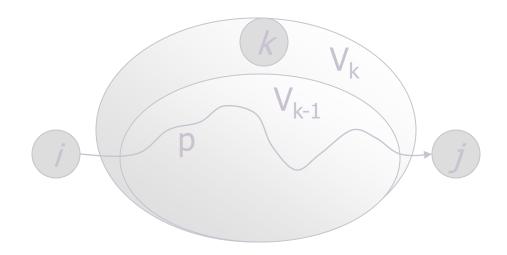
Main idea: a path exists between two vertices i, j, iff
 there is a path from i to j going through intermediate
 vertices which are drawn from set {vertex 1, 2, ... k-1}; or

•there is a path from i to j going through intermediate vertices which are drawn from set {vertex 1, 2, ... k}; or

••••

 there is a path from i to j going through any of the other vertices

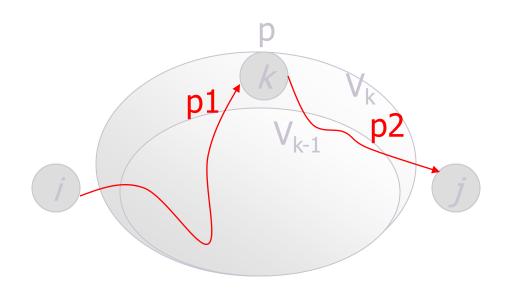
n2


#### **& Idea: dynamic programming**

- Let V={1, ..., n} and for k≤n, V<sub>k</sub>={1, ..., k}
- For any pair of vertices i, j∈V, identify all paths from i to j whose intermediate vertices are all drawn from V<sub>k</sub>: P<sub>ij</sub><sup>k</sup>={p1, p2, ...}, if P<sub>ij</sub><sup>k</sup>≠Ø then R<sup>k</sup>[i, j]=1 V<sub>k</sub>

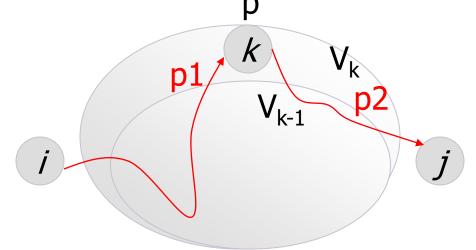
- For any pair of vertices i, j: R<sup>n</sup>[i, j], that is R<sup>n</sup>
- Starting with R<sup>0</sup>=A, the adjacency matrix, how to get R<sup>1</sup>⇒ ...
  ⇒ R<sup>k-1</sup> ⇒ R<sup>k</sup> ⇒ ... ⇒ R<sup>n</sup>

& Idea: dynamic programming

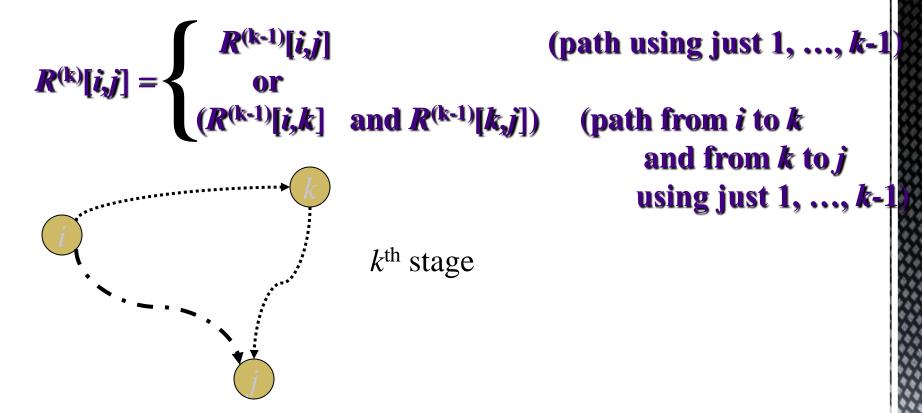

- p∈P<sub>ij</sub><sup>k</sup>: p is a path from i to j with all intermediate vertices in V<sub>k</sub>
- If k is not on p, then p is also a path from i to j with all intermediate vertices in V<sub>k-1</sub>: p∈P<sub>ij</sub><sup>k-1</sup>

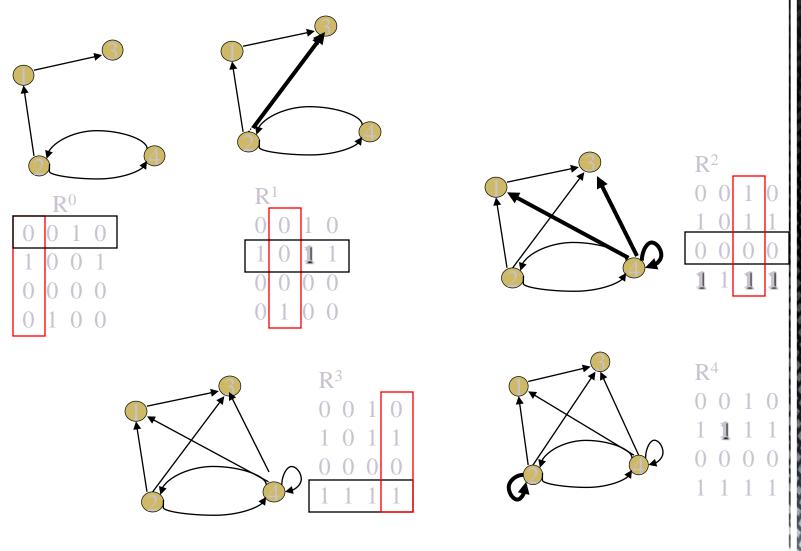


& Idea: dynamic programming

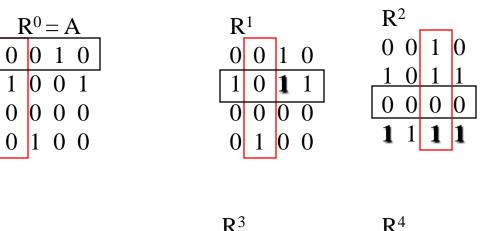

- p∈P<sub>ij</sub><sup>k</sup>: p is a path from i to j with all intermediate vertices in V<sub>k</sub>
- If k is on p, then we break down p into  $p_1$  and  $p_2$

– What are  $P_1$  and  $P_2$ ?





& Idea: dynamic programming

- p∈P<sub>ij</sub><sup>k</sup>: p is a path from i to j with all intermediate vertices in V<sub>k</sub>
- If k is on p, then we break down p into  $p_1$  and  $p_2$  where
  - $p_1$  is a path from i to k with all intermediate vertices in  $V_{k-1}$
  - $p_2$  is a path from k to j with all intermediate vertices in  $V_{k}$




 In the k<sup>th</sup> stage determine if a path exists between two vertices i, j using just vertices among 1, ..., k





11



| 0 0 1 0 0 0 1                                                                                                       | 0 |
|---------------------------------------------------------------------------------------------------------------------|---|
| 0    0    1    0    0    1    0      1    0    1    1    1    1    1    1      0    0    0    0    0    0    0    0 | 1 |
| 0 0 0 0 0 0 0 0 0                                                                                                   | 0 |
| 1 1 1 1 1 1 1 1                                                                                                     | 1 |